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Abstract—Dispersion of Rayleigh-type surface waves is studied in a liquid-saturated porous solid
layer under a uniform layer of homogeneous liquid. and lying over a transversely isotropic elastic
half-space. Special cases have been deduced by reducing the depth of the layer to zcro and by
changing the transversely isotropic solid to an isotropic elastic solid.

A frequency equation in the form of a tenth-order determinant is obtained. For numerical
calculations, a particular model consisting of 4 water-saturated sandstone layer lying over a berylt
solid and under a uniform layer of water is considered. To observe the effects of the depths of the
layers on the phase velocity, dispersion curves for the phase velocity have been plotted for different
values of the ratio of the depths of two layers.

INTRODUCTION

Liquid-saturated porous rocks are often present on and below the surface of the Earth.
Sedimentary layers consisting of sandstone or limestone saturated with water, arc usually
present below occans. Layers of porous solids such as sandstone or limestone saturated
with ground water or oil are present in the Earth’s crust. Constitutive equations and
cquations of motion, including inertial terms, for such solids were formulated by Biot
(1956a, b). Biot (1956a, b, 19624, b) found that propagation of two dilatational waves along
with one shear wave is possible in such solids. In the absence of dissipation, these waves are
elastic in nature, the propagation being at constant velocity with undiminished amplitude. If
dissipation is taken into account, cach of the waves is dispersive and dissipative; that
is, the velocity is a function of frequency, and amplitude undergoes spatial attenuation.
Deresiewicz (1960, 1961, 1964a, b, 1965), Deresiewicz and Rice (1962) and Deresiewicz
and Levy (1967) investigated various aspects of the effects of the presence of boundarics
on the propagation of plane harmonic seismic waves in liquid-saturated porous solids.
Deresiewicz (1960, 1961, 1964a,b, 1965), Deresiewicz and Rice (1962) and Deresiewicz
saturated porous solids.

There are reasonable grounds for the assumption that geologic materials are aniso-
tropic. An obvious example is that of the materials deposited in water. Anisotropy in the
Earth’s crust and upper mantle have significant effects on the surface wave characteristics
such as phase and group velocitics. Many investigators have studicd the propagation of
elastic waves in an isotropic medium. Stoneley (1926), Biot (1952) and Tolstoy (1954)
studied the propagation of elastic waves in a system consisting of a liquid layer of finite
depth overlying an isotropic half-space. Abubaker and Hudson (1961) studiced the dispersive
propertics of liquid overlying a semi-infinite, homogencous, transversely isotropic half-
space. Gogna (1979) considered surface wave propagation in a homogencous anisotropic
layer lying over a homogencous, isotropic, clastic half-space and under a uniform layer of
liquid.

Here we have considered the problem (two-dimensional) of surface wave propagation
in a liquid-saturated porous solid layer, overlying an impervious, transversely isotropic,
elastic, solid half-space and under a uniform layer of liquid. This appears to bc of practical

t Beryl is a hexagonal crystal of the class specified by the group D% (Love. 1944).
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interest as the sediments deposited under water may be assumed to be transversely isotropic.
It is also a more realistic model for the ocean bottom. Hence, it is relevant to the study of
Rayleigh waves at the upper surface of the ocean. Some special cases have also been
discussed.

FORMATION OF THE PROBLEM

We consider a medium consisting of a liquid-saturated porous layer, of thickness #,
resting on a transversely isotropic elastic half-space and under a uniform layer of liquid, of
thickness A. We consider a rectangular coordinate system, such that the z-axis is chosen in
the direction of increasing depth and z = 0 is taken as the interface between the two layers.
Hence, the transversely isotropic elastic solid (medium I11) occupies the region = > H, the
liquid-saturated porous solid (medium If) occupies the region 0 < z < H, and the region
—h < z < 0 is occupied by the liquid layer (medium [), as shown in Fig. L.

We discuss a two-dimensional problem with wave front parallel to the y-axis, so that
the displacement components in the x and z direction are independent of y, and the
components in the y direction will vanish.

BASIC EQUATIONS AND THEIR SOLUTIONS

For the liquid layer (medium I}, the equation of motion in terms of the displacement
potential ¢, is given by

, (la)

where a(= \/):,7;;) is the velocity of the dilatational wave in the liquid, p, is the density
and 1, is the bulk modulus of the liquid.
The displacement components u,, wo and pressure p are given by

0 0,
Uy == =—, Wg = ~é‘:—

and p= —o0. = —iVi¢,, (1b)
0x

14

where ¢.. is the normal component of stress in the liquid.
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Assuming ¢g = @y(z) e** ", substituting in (1a) and solving, yields
Gol2) = Age*Fo+ Bye*

and therefore

bo = (Aﬂek::o+Boe~k::ﬂ) giklr=en . (1¢)

where A,, B, are arbitrary constants and &, = /1 —c?/a".
For the liquid-saturated porous solid (medium II), the field equations are given by

Biot {1962a) as

. o d
NViu+grad {{(D+N)e+Qc} = W{p.,u—t-p,:U}-{—bé;(n—U)

and 4]

-

0° d
grad {Qe+ Re} = 3 {p:u+p,,U} ~b-a—[(u——U),

where e = divuand ¢ = divU.

u and U are displacements in the solid and liquid parts of the porous aggregate,
respectively: D, N, @ and R are the elastic constants for the solid-liquid aggregate ; and
P P12 and p,, are the dynamical coefficients.

The dissipation coeflicient b is

L/ P
b= i 3
x! 3

where # is the fluid viscosity, x is the cocfficient of permeability and ff is the porosity.

This expression for b is valid for the low frequency range, where the flow in the pores
is of Poiscuille-type. For higher frequencies, a correction factor is applied to the viscosity,
replacing it by nF, where Fis a complex function of frequency evaluated by Biot (1956b).

We consider the Helmholtz resolution of cach of the two displacement vectors, in the
form

u = grad p+curl H, } 4
U = grad ¢ +curl G. )

Substituting (4) into eqns (2) yields a pair of equations which are satisfied provided that

* * az a
PVp+QVY = i {Pn‘ﬁ‘*‘ﬁ:z%ﬁf‘}'f‘bé; (p—y);
a? d )
QVi¢+ RV = o {pib+paath} “bb;(‘/"“'//)i

and

-

’ 9° d
NVH = 3 (Pu”‘*‘l’tzc)*‘b&(ﬂ—c).
o é ©)
0= Es(ﬂnz"‘*ﬂzzc)—bg;(ﬂ—c)-

If we eliminate ¢ from eqns (5), we shall obtain a fourth-order differential equation in ¢.
To solve this equation, we substitute
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¢=0¢ +¢-

,\
~1
~—

and obtain

{V3+ <3)}¢ 0. (j=1.2) (8)

where ¢, and ¢, are time harmonic scalar potentials ;

. B+ /B-34C . B—_B'-344C
HE=m e = ——

A=(D+2N)R-Q",

b b b
B=\p +i—|R+{peti—|(D+2N)=2|p,.—1- Q.
W o) w
b b bY
C= (Pu+‘w><l’z:+l“)>—</’l:*l(”) : (9)

and o is the angular frequency.
With the help of eqns (7) and (8). it can be found that

o=y s, (10)
where

, = (Pu@ DR = (p w0 ~ib)Q = (A/x])

)22+ i Do —i = 1,2).
1y (P20 +ih)Q — (p 20 —iP)R (J ) (1)
Solving cqns (6), we obtain
G- ~<"':"" f”)“
P +ib
= 1()”(811)’) (12)
and
2 ) :
{V-“L(”)}H:O' (13)
%
where

= (14)

Hence, in an unbounded lquid-saturated, porous medium. two dilatational waves can
propagate along with one shear wave.

For two-dimensional motion in the x-: plane. the displacements in the solid
u = (,0,w) and in the liquid U = (U, 0, W) are given by
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3 Ch, Y h
u= _fb_| + o
éx  Cx oz

29, , 0b:

W= ,
5'6¢ ez ‘;x ” g (15)
! @, Y,
U—#gg-i-#:g'-{-aa o
0y CPa Yy
W-/,t,—:+,u: 2z M

where y = (—H)y.
Stresses in the solid ¢,;, and in the liquid o, are

6, = (De+ Qe)d,; +2Ns,-,,.}

o = Q¢+ Re, (16)

where J,, is the Kronecker delta, and

Lf{cu u,
oo — L) 17
=3 (r’x, + Bx,) (n

Wave potentials ¢, b, and i, are the solutions of eqns (8) and (13), respectively, and
maily be written as

¢, = [A, 9+ B e ek, (/=12 "
‘p[ = {A_;Ck:t"*‘!;;c k:\‘,}cik(p.a); ( )

where A,, B, arc arbitrary constants, & is the wave number, ¢ is the phase velocity and
§=V1-@1) (j=123). (19)

For a homogencous, transversely-isotropic, elastic solid (medium HI) with symmetry
about the z-axis, following Love (1944), the strain energy volume density function has the
form

2WE = A%(el, +¢{,"T +C*el +2F*(e,, +e,,)e..
+2(A*=2N*)e e, + L¥ (e +e) +N*el ;. (20)

where the displacement u* = (u*, v*, w*), and

—F ==, (i #])
ox; X,
ey =1 ‘: v 2N
Cll, » .
_c";,’ (i=]))

Restricting motion to two dimensions (x, ), the strain energy volume density function
(20) becomes

IWE = A*ei +crel +2F e e + LY (22)

Since W} is of positive definite form, then
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A*>0, C*>0, L*>0 and A*C*> F*' (23)

It is also assumed that A* > L* and C* > L*.
Components of stress can be derived by the formulae:

CHW*
ot =" (i.j=xy.2). (24)
ce,,

The equations of motion where there are no body forces. are

(13 * 22, % RN 2 %
A L O L O
cx- cz- fx ¢z ar’ (25)
o w* &wt T Otw*
LY —— +C*— F*+L* = p¥—
cx” + éz* T )0.\' oz ot~
where p* is the density of the transverscly isotropic medium.
As in medium II, we seek a solution of (25) of the form
(“*‘ “.t) = [U*(Z), W*(:)] e|k(r» u)‘ (26)
and find that eqns (25) reduce to
LAUS +ik(F*+ L¥)W* = (A% = p*cHkIU* = 0, a7
C*W* 4k (F* 4 LU ~(L*—p*cHk*W* = 0;

where the primes denote differentiation with respect to 27
Folowing the orthodox method of solving simultancous linear equations with constant
cocflicients, we write

L/* — [)* . -/(.r.“ ]
W* = Q*::Ju: } (28)
Substituting these vatues into (27), we obtain
(s2L*+ R*)P*—(isJ*)Q* = 0, } 29)
—(is/*)P*+(s°C*+S*)Q* = 0;
where J* = F*+ L* R* = p*c'—A* and S* = p*c’~L*.
For the non-trivial solution of eqns (29), we have
L*C*s* +(R*C*+S*L*+J**)s*+ R*S* = 0. (30)
Equation (30) is quadratic in s* and has the roots
-z 1_4L*C*R*S*)V?
rs(r LCRS). Gl

2LxCH

where I = R*C*+S*L*+J*%.
The ratio of the displacement components U* and W*, from (29). corresponding to

S =5, 1S
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2 »*
Wr QF L*S+R

—17};« == -P7 —-—-E;‘i;——— =m, (Say). (32)

Thus, the solutions of eqns (25) can be written as

u* = {P?e—ks,:+Pge—k:::+Pa;elul:_{_P:ehz-‘} C'k(""c",

w* = {m (Pte " + PYe* )+ my(PYe o + Pelr)} et (33)
where Pt, P%, P%and P} are arbitrary constants and

. —T+(=1)/(T*—4L*C*R*S*)"*
5 = ( )(21,‘('. =12 (34)

Since the displacement components tend to zero when = tends to infinity, we therefore take
the expressions for «* and w* as

u* = (P““e“*-’ﬁ_‘_ P?C‘k’f") gikte—en

W‘ - (mlprc,k,lg +”,2ch~/:.:::) c:k(.\'«cl) ; (34‘1)

where s, and s, are assumed to be real and positive.

BOUNDARY CONDITIONS

For two-dimensional motion, we consider the boundary conditions appropriate for
the following

(a) The free surface of the liquid layer, which is the vanishing of the normal stress com-
ponentat = = —#h, L.e.

0 ‘ =P =(0.)i = AV¢ =0 (35)

(b) The interface between the liquid layer and the liquid-saturated porous solid. Following
Deresiewicz and Skalak (1963), these are the continuity of the stress components, liquid
pressure and component of velocity normal to the interface averaged over the bulk
area, along the interface at 7 = 0, i.e.

® (@Du+ @) = —(ph = 4,V?¢ )
(i) (6::)u=0
1 » (36)
(1) B(U)n =—{p) = }»uvzd’
(iv) (=P +BHW )y = vy,

(c) The interface between the liquid-saturated porous solid and the transversely isotropic
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clastic solid. Following Deresiewicz and Skaluk (1963), assuming the transversely
1isotropic clastic solid to be impervious, these are the continuity of stress and displace-
ment components, and the vanishing of the normal velocity of the liquid relative to the

solid in the liquid-saturated porous solid along the interface at = =

(i)
(i1)
(iii)
(iv)
(v)

(6:)n+ (o) = (6%
(@-Ju = (62

W)y = (w* )y

(@ = (*)u

(i) — (W) = 0.

—-H, ic.

9 (37)

Muaking use of (1), (15), (16), (18), (24) and (34a) in the above boundary conditions,

we obtain 10 homogencous equations in A, By, A,, B, A.. By, A;, By,

*and P% The

non-trivial solution of this system of equations requires

where a,,.
s
5 Tl ¢
Ay =dyy = o— 2
N 2
ays =dyg = 235,
.2
iy €
Uyog = dyg = 37 7354
Na-

la,| =0

(38)

the entrics of the tenth-order square matrix, arc as follows:

_ -9 T: (,2
Ay =dyg = o~ ‘N‘ a’
dyy=ay =0,
dyy = —dx; =25,
Ays = —U;4 = l+‘;;%
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a-‘\Jﬂ O (j = 71 8;9| IO}|

Ora = O, ™=
b3 ) 34 _(l\e; 15
E}‘_o «
dyg =0 = =TI
39 10 ‘Y:{

Jay &= = Uy = (l-.ﬁ+5pl)ib
gy =ay=1
Gy =l &,
iy = @, ek,

-~ kY

Oy = @yt “%,
T5y == P;c“"‘ﬂ;
tgy = (ﬁg‘”} == 04

Qag = R;¢ -*’ﬁ”g

oE A
Uyy =& 7
- 3
Uay =g 770
T A
fyg =&,

apy = =~ e

ty =0 = #y .
Uys = g kR
tyy = — e
ayg = Eye M,
tyy = ~e"“(!‘ﬁ'

tgy = {1~ )5, e,
ayy = (1= 3¢ e,
ags = (1 —ay) e,
uy, =0{;j="787910),

ke
Hyge =€ 770

where

T, = P+ Q+u,(0+R),

P = (rw C* il

Rf Sj‘f.

_F*si-R"

g+ 8y
N 1

dyy —4dy —

a,=0(f=5.6758).

gy = —agee (I~F+)5).

gy = =y l"“ﬂ*‘”?u‘

gy = — &y ™ §gn

— A,
¥

Qs == 8,y,8

2
—kME
iy =0l 48 =1,

—kME
iy = UneT ',

(n=imd; i=5,6
@y = p:eusriii'
Wy = Rle_“kﬂw

gy == lgp1g = 13

3 =R
Wy = o 0T

dyy = —Ey e
dny = e
= m(ye
—
=i,
g =&, eb,
pE——

ay, =ayo =10

dyy = (g, ~1)E e,
gy = (#) — 1) ey
@y = (2,— 1y 5,
&gy = 0= 1.2,....8),

@0 = ¢, {39)

i
)ﬁ (30)

L' +R*

o oand ) T G=L7

The eguation |a,,} = 0, given by (38), is the required requency equation relating the
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phase velocity ¢, to the wavelength 2n’k. The wavelength is a multi-valued function of
phase velocity (each value corresponding to the different mode of propagation) and hence
indicates the dispersive nature of the wave. Such a surface wave will be homogeneous if.
and only if, the equation given by (38) has a real solution. i.e. there should be at least one
value of ¢ for which 5, and s, are real and positive.

SPECIAL CASES
{1) Substituting

A*=C*=i+2u. F*=4i and L*=p. @)

a transversely isotropic half-space can be changed to an isotropic half-space. Hence, we
have

, CZ (.2
57 = 1"" 5 = Rt
S‘l % A I /‘»

- (- - 2

P= () e
!

g, =s, Q= —-

ISRV
Rl = ?..\'l, 1{3 = (2’“ /i:>;i[.\'.\:

where
2=~ and fi="_. {42)

Using the above relations, the frequency equation (38) reduces to the cquation obtained
by Hazra (1984), as the dispersion equation for Rayleigh-type surfiace wave propagation
in a liquid-saturated porous layer, lying over an isotropic elastic half-space and under a
uniform layer of liquid. Furthermore for A — oo, the liquid layer will behave as a liquid
half-space and the reduced frequency cquation will give surface wave propagation in a
liquid-saturated porous layer, bounded between an isotropic elastic solid and a liquid haif-
space. It is found to be the sume as that obtained by Hazra (1984).

(it) Reducing the thickness of the liquid-saturated porous layer to zero, t.e. H =10
(without loss of generality, we can put the porosity ff = 0 also), we get

0 0 e kAl c“'*:n

32‘0 (‘2 ;.() ('2
£ Py - Nal N =0 (43)
¢ ¢ <o =<y

as the dispersion equation of a liquid layer, overlying a transversely isotropic, elastic solid
half-space, which is the same as that obtained by Abubaker and Hudson (1961). The values
of Py. P>, 0. Q. R, and R, are as in cqn (40).

Further substituting i = 0, eqn (43) reduces to
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P|R:—R1P2 z0, (44)

which gives Rayleigh-type surface wave propagation at the free surface of a transversely
isotropic, elastic half-space.
Substituting (42) in (44), we get

2=cB) = 4/ 1=l (/1= B). @3

the equation for Rayleigh wave propagation at the free surface of an isotropic elastic solid.
(iii) Removing the overlying liquid layer by putting & = 0, the frequency equation (38)
will reduce to

lb:‘jl =0, (46)

where b, the entries of a square matrix of the order eight, are given by

ife

{a,i [ = 1,2.3

b, = ;
o af—l.f l=5,6,..

g =128

Equation (46) is the frequency equation for surface wave propagation in a liquid-
saturated porous layer lying over a transversely isotropic, elastic solid half-space. Using
relations (42), the transversely isotropic, elastic half-space can be further changed to an
isotropic elastic solid.

DISCUSSION AND NUMERICAL RESULTS

Since a large number of parameters enter into the final expressions, then in order to
discuss the possibility of propagation of surface waves discussed above along the x direction,
a purticulur model is considered. The model considered is assumed to consist of a layer of
water-saturated sandstone under a uniform layer of water and overlying a beryl solid as
the transversely isotropic, elastic hall-space.

Equation (38) is a complex equation. For real wave numbers it is not possible to find
the value of the real wave velocity. This equation has, therefore, been reduced to a real
cquation by assuming that the water-saturated sandstone is non-dissipative. We may men-
tion that this is an assumption in order to solve the frequency equation (38) numerically,
to obtain the velocity of propagation.

For this model, we calculated the ratio of the phase velocity to the velocity of slow
dilatational waves in a water-saturated sandstone layer (¢/a,), for given values of the
dimensionless number kH. The value of the ratio ¢/a, is found to be different for different
values of k.

For the water layer, following Ewing et al. (1957), for sound speed, density and bulk
modulus, we have taken the following values:

4o = 0.214 % 10" dynes em ™2,

po=1gem™?,
giving the velocity of the P wave as
a=1463x10° cms™".

For water-saturated sandstone (medium II), keeping in view the experimental results
given by Yew and Jogi (1976) which differ slightly from the experimental results given by
Fatt (1959), the following values of the relevant parameters are taken:
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P=215x10" dynescm
Q=0013x10"" dynes cm " *
R =0.0637 x10'" dvnes cm ~*
N=0922x10" dynes cm~*
P =19032gcem™?
pi=00gem
P2 =0268 gcm™?
B =0.268

n = 0 (non-dissipative solid).

The velocities of the P, P, and S¥ waves for the above constants are

1

1 =3326x10°cm s !

2= 1.54x10cms !
22x10%ems ',

I

X3

respectively.
For the impervious, clastic beryl half-space (medium 1), following Love (1944), the
values of the relevant parameters are taken to be

It

A*
c*
F*=661x10" dynes cm
L*

26.94x 10" dynes cm ?

i

23.63x 10" dynes cm

6.53 x 10" dynes cm  *

i

1

It

p*=27gcm

It denotes the depth of the water fuyer and # is that of the water-saturated sandstone
fayer. For the case of numerical calculation, we have fixed the value of 4, /1. Numerical
results have been obtained only for the following values of A7 #:

/
}'.{zo.o, 0.5, 1.0, 2.0, 50 and 9.0.

Using all the above values of parameters for the assumed model and for each value of
h{H, we obtained solutions of eqn (38) for ¢/x, in the appropriate range (so that s, and s,
remain real). The value of the dimensionless number & H is considered to vary from 0 to 3.
For the solutions, a computer program in FORTRAN-IV was used on a PC.

When the depth of the water layer is zero, i.e. A/ H = 0. the phase velocity decreases
rapidly with increasing values of kH. It keeps on decreasing almost at the same rate until
ki1 assumes the value 1.2 approximately, after which the rate of decrease of ¢ becomes
gradual. For larger values of kH, the phase velocity becomes almost constant, approaching
the velocity of the P, wave in a hiquid-saturated porous solid.

For the case when A/H = 0.5, i.c. the thickness of the water layer 1s half that of the
porous solid layer, the behaviour of the dispersion curve is the sume as in the previous case.
However, the rate of decrease in phase velocity becomes slower as AH assumes the value
1.0, approximately.

When the thickness of both layers are the same, i.e. i/H = 1, it was observed that the
phasc velocity decreases rapidly with increasing values of kH. The rate of decrease remains
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almost constant. The phase velocity attains a minimum value, approximately equal to the
velocity of the P, wave in water-saturated sandstone at kH = 1.3, after which the second
mode starts.

If the thickness of the water layer is double that of the porous layer, the phase velocity
decreases more rapidly than when # = H. attaining a minimum value for AH < 0.9.

It has been observed that as the value of 4/ H increases, the phase velocity of the surface
wave decreases. However, the rate of decrease of phase velocity with increasing kH,
decreases.

If the thickness of the water layer is considered larger than that of the porous solid
layer, e.g. A/H = 5. then reverse behaviour of the dispersion curve is observed. The value
of phase velocity increases with increasing values of AH and also with increasing values of
hiH. A wave exists only for smaller values of kH.
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